Remote Sensing of Water Vapor Using NCAR Microwave Radiometer

Presentation to the 3rdSoMEX/TiMREX Science Workshop

> Taipei, Taiwan November 4, 2010

Vivek Earth Observing Laboratory National Center for Atmospheric Research Boulder, Colorado, USA

> SwaroopSahoo and Steve Reising Colorado State University Fort Collins, Colorado, USA

Instruments

•Ground-based radar: (i) total phase or delay and (ii) absorption using a dual-wavelength radar

• Ground-based multi-wavelength microwave radiometer

• Satellite-borne microwave radiometer

Radiometer Technique

• Radiometers measure brightness temperatures T_b , that are converted into optical depths, τ .

NCAR

$$\tau = \log \left(\frac{T_{\rm m} - T_{\rm sky}}{T_{\rm m} - T_{\rm b}} \right)$$

- Optical depths are linearly related to LWP and VWP
- k_iand k_v are path averaged coefficients.
- + τ_{d} is the 'dry' optical depth
- Two wavelengths, two equations, two unknowns - retrieve LWP and VWP.

$$\tau = \mathbf{k}_{1} \mathbf{L} \mathbf{W} \mathbf{P} + \mathbf{k}_{v} \mathbf{V} \mathbf{W} \mathbf{P} + \boldsymbol{\tau}_{d}$$

Times series measurements of temperature, integrated NCAR vapor and liquid

Spatial and Temporal Resolutions

(a) Radiosondes:

Synoptic scale; twice daily. Thermodynamic vertical profiles for weather diagnostics and prediction

Don't resolve microscale and mesoscale features of minutes to hours and 1-10 km scale

(b) Satellite: Crude vertical resolution within boundary layer

(c) Radiometer: Continuous observations to fill temporal gaps between radiosondes
 (i) Microwave: Measurements during both cloudy and clear air

(ii) Infrared: Biased in cloudy condition

ertical resolution declines in proportion to height above ground level

Ground-based radiometer

Profiling Using a Microwave Radiometer

Frequency of the emitted radiation Bohr's Equation

$$u_{mn} = rac{E_m - E_n}{h}$$

Total internal energy of a molecule:

$$E_{int} = E_e + E_v + E_r$$

Two important rotational transitions: 22.235 and 183.31 GHz

e sis		
Mesosphere de de	$\Delta v_D > \Delta v_C$ (constant linewidth)	k
	$\Delta v_{\rm D} < \Delta v_{\rm C}$ (increasing linewidth)	<u> </u>
Sure		
Stratosphere		
Troposphere		total integrated line intensity observed

NCAR

Brightness Temperature and weighting function

 T_B : Brightness temperature W(f,z): Weighting function g(z): Water vapor density

Corrections for finite beamwidth and mean radiating temperature

T_B: Corrected brightness temperature

Retrieval Method: 1-D VAR (Variational Assimilation Retrieval)

W: m X n matrix

m: # of measurementsn: # of altitudes at which the WV density is desired

m<n i.e. # of measurements are smaller than # of unknowns

 $\rho_{v,a}$: a priori water vapor profile

: Error covariance matrix of the a priori water vapor profile

: Error covariance matrix of the measurements

Mathematical model fordescribing spatialicar resolution

Measurement:

Retrieved WV:

.... (2)

.... (1)

Retrieved WV = f(weighting function, retrieval coeff., measurement errors)

Brightness Temperature and weighting function

 T_B : Brightness temperature W(f,z): Weighting function g(z): Water vapor density

Improvement in resolution by adding scanning measurements to vertical pointing observations Radiometer retrieval of temperature, RH, and liquid water content during a supercooled fog event NCAR (Knupp et al., JAOT 2009)

Tradeoff curve: Uncertainty vs Spatial Resolution

From Conrath, B., J., 1972, JAS

Summary

- Radiometer is capable of providing high temporal estimates of water vapor.
- Inherent spatial or vertical resolution of water vapor estimate is limited.
- Vertical resolution of the water vapor can be improved by the following:
- (i) narrow-beam radiometer

(ii) 1-D Var method

(iii)including scanning measurements to vertical pointing observations (iv) tradeoff between std. error in WV and spatial resolution

Summary of spatial and temporal resolutions

Sensor	Horizontal	Vertical	Temporal	Frequency
	Resolution	Resolution	Resolution	Band
	(km)	(km)	(hr)	
GPS Ground	50	0.5 -1	0.5	I -band
Network	50	Expected	0.5	L-band
Radiosondes	~315 km	0105	12	NI/A
	spacing	0.1-0.5		\mathbf{N}/\mathbf{A}
COSMIC	200-600	0.1 – 0.5	0.5	L-band
			(2-hr lag)	
AMSU-B	20	2	12	G-band (183
				GHz)
Network of	0.5	0.5-1	0 16-0 25	K-band
CMR-Hs	0.5	0.0-1	0.10-0.23	ix-band

3-D WATER VAPOR MEASUREMENT TECHNIQUES

Radiation Transfer EquationRadiation transfer equation:
$$\frac{dI_{\nu}}{ds} = -I_{\nu}\alpha + S$$
Solution to the above: $I_{\nu}(0) = I_{\nu}(s_0)e^{-\tau(s_0)} + \int_0^{s_0} B_{\nu}(T)e^{-\tau(s)}\alpha ds$

Rayleigh-Jeans limit to Plank's function:

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{\frac{h\nu}{kT}} - 1} \approx \frac{2h\nu^3}{c^2} \frac{kT}{h\nu} = \frac{2kT}{\lambda^2}$$

Microwave radiometry:

$$T_b(\theta) = T_{bg}e^{-\tau(\theta)} + T_m(1 - e^{-\tau(\theta)})$$

Mathematical model fordescribing spatialicar resolution

Measurement:

Retrieval of WV:

.... (2)

.... (1)

.... (3)

..... (4)